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Webly-Supervised Learning (WSL) 1 RiiE

« How to learn robust representations from abundant, weakly-labeled web images?
« Challenge 1: label noise
« Challenge 2: domain gap
Web Real-World Web Real-World

« Generalizability on real-world testing sets is not emphasized.



Prototypical & Contrastive Learning «d B

« Prototypes
« A representative embedding for a group of semantically similar instances
« Contrastive Learning
« A self-supervised learning method that brings samples from the same instance
closer, and separates samples from different instances farther
« Why Prototype + Contrastive Learning?
« Instance-wise contrast push two different instances of the same class
« Prototypical-instance contrast encourages formulation of semantic structure

S . Fine-grained prototypes (e.g. horse with man)

) . Coarse-grained prototypes (e.g. horse)
Instance-wise Contrastive Learning

= Prototypical Contrastive Learning




FoPro for A Brand-new Setting of WSL

Objective

« Learn from web data for real-world applications

« Two key problems: 1) whom to learn from; 2) what to learn

Contribution

« A new few-shot setting

- A new prototypical contrastive representation learning method
« A new flexible relation module
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FoPro Model Architecture

classifier, and one relation module

of iffE

Two siamese encoders, one classifier, one projector, one reconstructor, one auxiliary
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FoPro Stage 1: Preparation «! BiRfiE

Learn common, regular patterns for the encoder via:

L5 = —log(pyyy )-

i(yi)
Extract principal, distinguishable low-dimensional embeddings via:

L0 = (|95 — v 12 ~log(al,,))



FoPro Stage 2: Incubation

Initialize prototypes with labeled, reaI -world fewshots via:

Ck
k Zz, Cr = —= :
K yzz_ [éxl
Pull instances closer to their prototypes via:

w;t w;
Efro _ log exp((zz- "Cy; — 0 t)/¢yz)

S 1 exp((z - e — w3t /o)

Pull instances from the same sample closer via:
w; t /w;t
ns __ eXp( 7 /T)
Li - log )
lw;t
Z —1 exp(z "2, /T)
Tighten/loosen class cluster distribution adaptively via:
w;t
5 D=k 12— Ckll2
k = w;t w;t )
N, " log(N, " + «)
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FoPro Stage 3: Illumination 1 BRiEE

Select clean sample for relation module via:

C
D" = D' U{(x{,y")| D I(z} —cy,) - cj| < o},
1=1
Learn the metric on instance-prototype similarity via:

rel __ eXp(riyi)
L;” =—log —5

> k=1 €XP(Tik) |




FoPro Stage 4: Verification ! B

Complete wrong Iabel correction, out-of-distribution sample removal via:

= Bp;’ + (1 = B)[cy, ... CC]T X

[y if 73y, > 7,
) argmaxg sfi‘ék) else if maxy S;‘Ek) 2> Wy
Ui =\ g else if s ) > 1/C,

| Null (OOD) otherwise,

Leverage self-knowledge with model prediction and self-contained confidence via:
cls __ _ t
w w
=] = Si(gi)) Zk:l pi(k) log P;(k)-

Maintain noise-robust prototypes via:

[
Ck —mpck—l—(1—mp)z1”,c;.C = Ak .
€k |l2




FoPro Results on Fine-Grained Datasets

« FoPro boosts performance of vanilla backbones more significantly than SOTA methods.

« FoPro achieves consistent performance with an increasing K-shot.

Back- WebFG496

Method bone Bird  Air Car Avg.

Vanilla R50 64.43 60.79 60.64 61.95
MoPro'! R50 71.16 76.85 79.68 75.90
SCC' R50-D  61.10 7492 8349 73.17
Vanilla B-CNN 66.56 6433 6742 66.10
Decouple B-CNN 70.56 7597 75.00 73.84
CoTeach B-CNN 7385 7276 73.10 73.24
PeerLearn B-CNN 7648 7438 7852 76.46
PeerLearn’ B-CNN 76.57 7435 7826 76.39
FoPro(K=0) @ B-CNN 77.79 7937 86.99 81.38
FoPro(K=1) B-CNN 78.07 79.87 88.01 82.03
FoPro(K=16) B-CNN 85.54 8640 91.51 87.81

T Results are reproduced by ourselves with the official codes.
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-
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FoPro Results on Large-scale Datasets «d Wi

FoPro is initially preceded by SCC and MoPro, but rises steadily after efficiently exploiting a

few real-world examples.

When K=0, the prototypes are solely initialized by web examples randomly. The relatively
higher percentage of noise in WebVision/Google500 causes lower performance.

Back- ImageNetlk ImageNet500
Method' bone Top 1g TopS Top flg Top 5

Inception
MentorNet ResNetV2 6420 84.80 - -
Curriculum- Inception
Net V2 64.80 8340 - -
Vanilla R50-D 67.23 84.09 - -
SCC R50-D 6793 84.77 68.84 84.62
scct R50-D 67.57 8574 6440 81.56
Vanilla R50 65.70 85.10 61.54 78.89
CoTeach R50 - - 62.18 80.98
CleanNet R50 63.42 8459 - -
MoPro R50 67.80 87.00 - -
MoPro R50 66.05 85.66 58.68 78.39
PeerLearn' R50 5257 7335 42,04 61.71
FoPro(K=0) R50 67.03 8557 68.59 86.03
FoPro(K=1) R50 67.55 8631 69.11 86.19
FoPro(K=16) RS50 68.83 87.83 72.02 89.38

T Results are reproduced by ourselves with the official codes.
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Reduced Gap of Web & Real-word Performance =t

The abnormal case of K=4 is due to sampling jittering where atypica, unrealistic images of
certain classes can be sampled from ImageNet1k.

The reduced gap reflects that FoPro bridges the noisy web domain and real-world domain
with limited K'shots.

K WebFG496 Avg.  ImageNetlk ImageNet500
Top 1 Gap Top 1 Gap Topl Gap

0 8138 — 67.03 557 6859 3.85
1 +0.65 — +0.52 522 +052 3.63
2 +0.85 - +0.67 520 +1.35 3.29
4 +2.17 - +032 460 +1.50 291
8 +4.10 - +0.85 4.64 +206 290
16  +6.43 - +1.80 391 +343 2.19
16 8781 - 63.83 - 202 -

Ref. 87.167 - 76.15% - 76.22% -

T Official results of the B-CNN trained on FGVC-Aircraft,
CUB200-2011, and Stanford Car are averaged.

" Official results of the RS0 trained on ImageNetlk by Py-
Torch are quoted respectively for 500 and 1k classes.



Ablation Study & Qualitative Results «1 i

« Compared with pre-defined, fixed similarity metrics such as cosine distance, our Relation
Module (RM) discovers clean examples more precisely and efficiently.

K=1 WebFG496 Avg. ImageNetlk ImageNet500
w/oRM  81.59 65.22 64.69
w RM 82.03 67.55 69.11

« Visualization on the sorted web examples confirm that the prototypes we polished can be
used to indicate clean, web images.
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Conclusion o BT

We propose FoPro, the first few-shot guided method for learning from web data, that
tackles both noise and domain gap with a large quantity of web images and a few real-
world images.

Our contribution
« We propose a new few-shot learning setting in WSL with abundant noisy web
images and a few real-world images, which aims to improve the performance of
WSL for real-world applications in a cost-efficient way.

« We present FoPro to solve noise and data bias in an end-to-end manner, which relies
on the formulation of class-representative and domain-generalized prototypes.

« We propose relation module for label noise correction. It outperforms fixed metrics
(cos distance) by evaluating instance-prototype similarity with a learnable metric.

« Performance under the increasing K-shot settings demonstrates that FoPro utilizes
few shots wisely to bridge the gap towards real-world applications.
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