

FoPro: Few-Shot Guided Robust Webly-Supervised Prototypical Learning

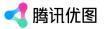
Yulei Qin, * Xingyu Chen, * Chao Chen, Yunhang Shen, Bo Ren, Yun Gu, Jie Yang, Chunhua Shen

AAAI 2023

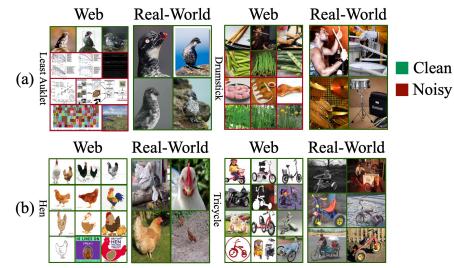
Tencent YouTu Lab

*: Equal Contribution

Webly-Supervised Learning (WSL)

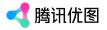


- How to learn robust representations from **abundant**, **weakly-labeled** web images?
 - Challenge 1: label noise
 - Challenge 2: domain gap

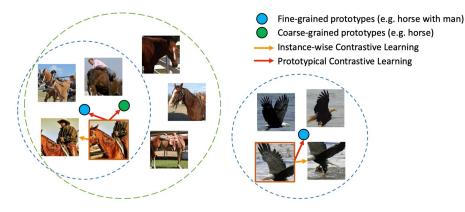


• Generalizability on real-world testing sets is not emphasized.

Prototypical & Contrastive Learning

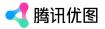


- Prototypes
 - A representative embedding for a group of **semantically similar** instances
- Contrastive Learning
 - A self-supervised learning method that brings samples from the same instance closer, and separates samples from different instances farther
- Why Prototype + Contrastive Learning?
 - Instance-wise contrast push two different instances of the same class
 - Prototypical-instance contrast encourages formulation of semantic structure



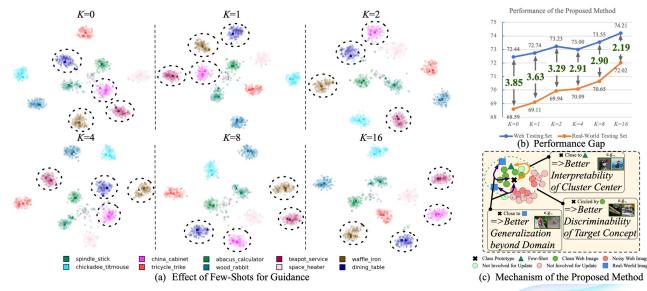
- 1) Prototypical Contrastive Learning of Unsupervised Representations, ICLR 2021
- 2) Learning from Noisy Data with Robust Representation Learning, ICCV 2021
- 3) MoPro: Webly-Supervised Learning with momentum Prototypes. ICLR 2021

FoPro for A Brand-new Setting of WSL

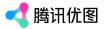


Objective

- Learn from web data for real-world applications
- Two key problems: 1) whom to learn from; 2) what to learn Contribution
- A new few-shot setting
- A new prototypical contrastive representation learning method
- A new flexible relation module



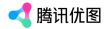
FoPro Model Architecture



• Two siamese encoders, one classifier, one projector, one reconstructor, one auxiliary classifier, and one relation module



FoPro Stage 1: Preparation



• Learn common, regular patterns for the encoder via:

$$\mathcal{L}_i^{cls} = -\log(\mathbf{p}_{i(y_i)}^{\{w;t\}}).$$

• Extract principal, distinguishable low-dimensional embeddings via:

$$\mathcal{L}_{i}^{prj} = \|\tilde{\mathbf{v}}_{i}^{\{w;t\}} - \mathbf{v}_{i}^{\{w;t\}}\|_{2}^{2} - \log(\mathbf{q}_{i(y_{i})}^{t})$$

< 腾讯优图

FoPro Stage 2: Incubation

• Initialize prototypes with labeled, real-world fewshots via:

$$\hat{\mathbf{c}}_k = \frac{1}{K} \sum_{y_i = k} \mathbf{z}_i^t, \mathbf{c}_k = \frac{\hat{\mathbf{c}}_k}{\|\hat{\mathbf{c}}_k\|_2}.$$

• Pull instances closer to their prototypes via:

$$\mathcal{L}_{i}^{pro} = -\log \frac{\exp((\mathbf{z}_{i}^{w;t} \cdot \mathbf{c}_{y_{i}} - \delta^{w;t})/\phi_{y_{i}})}{\sum_{k=1}^{C} \exp((\mathbf{z}_{i}^{w;t} \cdot \mathbf{c}_{k} - \delta^{w;t})/\phi_{k})},$$

• Pull instances from the same sample closer via:

$$\mathcal{L}_{i}^{ins} = -\log \frac{\exp(\mathbf{z}_{i}^{w;t} \cdot \mathbf{z}_{i}^{\prime w;t}/\tau)}{\sum_{j=1}^{Q} \exp(\mathbf{z}_{i}^{w;t} \cdot \mathbf{z}_{j}^{\prime w;t}/\tau)},$$

• Tighten/loosen class cluster distribution adaptively via:

$$\phi_{k} = \frac{\sum_{y_{i}=k} \|\mathbf{z}_{i}^{w;t} - \mathbf{c}_{k}\|_{2}}{N_{k}^{w;t} \log(N_{k}^{w;t} + \alpha)},$$

FoPro Stage 3: Illumination

• Select clean sample for relation module via:

$$D^{r} = D^{t} \cup \{(\mathbf{x}_{i}^{w}, y_{i}^{w}) | \sum_{j=1}^{C} |(\mathbf{z}_{i}^{w} - \mathbf{c}_{y_{i}}) \cdot \mathbf{c}_{j}| \leq \sigma\},\$$

• Learn the metric on instance-prototype similarity via:

$$\mathcal{L}_i^{rel} = -\log \frac{\exp(r_{iy_i})}{\sum_{k=1}^C \exp(r_{ik})}.$$



FoPro Stage 4: Verification

• Complete wrong label correction, out-of-distribution sample removal via:

$$\mathbf{s}_i^w = \beta \mathbf{p}_i^w + (1 - \beta) [\mathbf{c}_1, ..., \mathbf{c}_C]^T \cdot \mathbf{z}_i^w$$

$$\hat{y}_{i}^{w} = \begin{cases} \begin{array}{ll} y_{i}^{w} & \text{ if } r_{iy_{i}} > \gamma, \\ \arg \max_{k} \mathbf{s}_{i(k)}^{w} & \text{ else if } \max_{k} \mathbf{s}_{i(k)}^{w} > \gamma, \\ y_{i}^{w} & \text{ else if } \mathbf{s}_{i(y_{i})}^{w} > 1/C, \\ \text{Null } (OOD) & \text{ otherwise,} \\ \end{array} \end{cases}$$

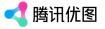
• Leverage self-knowledge with model prediction and self-contained confidence via:

$$egin{aligned} \mathcal{L}_{i}^{cls} = & -\log(\mathbf{p}_{i(y_{i})}^{t}) - \mathbf{s}_{i(\hat{y}_{i})}^{w}\log(\mathbf{p}_{i(\hat{y}_{i})}^{w}) \ & -(1 - \mathbf{s}_{i(\hat{y}_{i})}^{w}) \sum_{k=1}^{C} \mathbf{p}_{i(k)}^{w}\log\mathbf{p}_{i(k)}^{w}. \end{aligned}$$

• Maintain noise-robust prototypes via:

$$\hat{\mathbf{c}}_k = m_p \mathbf{c}_k + (1 - m_p) \mathbf{z}_i^{w;t}, \mathbf{c}_k = \frac{\hat{\mathbf{c}}_k}{\|\hat{\mathbf{c}}_k\|_2}.$$

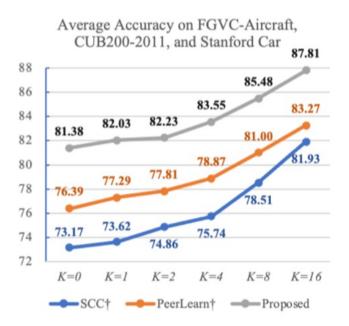
FoPro Results on Fine-Grained Datasets



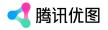
- FoPro boosts performance of vanilla backbones more significantly than SOTA methods.
- FoPro achieves consistent performance with an increasing K-shot.

Method	Back-	WebFG496			
	bone	Bird	Air	Car	Avg.
Vanilla	R50	64.43	60.79	60.64	61.95
\mathbf{MoPro}^{\dagger}	R50	71.16	76.85	79.68	75.90
\mathbf{SCC}^{\dagger}	R50-D	61.10	74.92	83.49	73.17
Vanilla	B-CNN	66.56	64.33	67.42	66.10
Decouple	B-CNN	70.56	75.97	75.00	73.84
CoTeach	B-CNN	73.85	72.76	73.10	73.24
PeerLearn	B-CNN	76.48	74.38	78.52	76.46
PeerLearn [†]	B-CNN	76.57	74.35	78.26	76.39
FoPro(K=0)	B-CNN	77.79	79.37	86.99	81.38
FoPro(K=1)	B-CNN	78.07	79.87	88.01	82.03
FoPro(K=16)	B-CNN	85.54	86.40	91.51	87.81

[†] Results are reproduced by ourselves with the official codes.



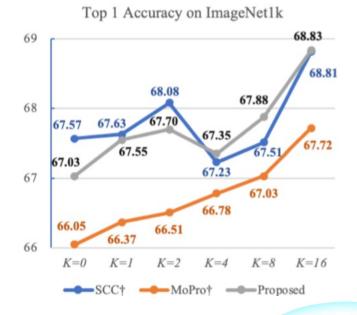
FoPro Results on Large-scale Datasets



- FoPro is initially preceded by SCC and MoPro, but rises steadily after efficiently exploiting a few real-world examples.
- When K=0, the prototypes are solely initialized by web examples randomly. The relatively higher percentage of noise in WebVision/Google500 causes lower performance.

Method [†]	Back-	ImageNet1k		ImageNet500	
Method	bone	Top 1	Top 5	Top 1	Top 5
MentorNet	Inception ResNetV2	64.20	84.80	-	-
Curriculum- Net	Inception V2	64.80	83.40	-	-
Vanilla	R50-D	67.23	84.09	-	_
SCC	R50-D	67.93	84.77	68.84	84.62
\mathbf{SCC}^{\dagger}	R50-D	67.57	85.74	64.40	81.56
Vanilla	R50	65.70	85.10	61.54	78.89
CoTeach	R50	-	-	62.18	80.98
CleanNet	R50	63.42	84.59	_	-
MoPro	R50	67.80	87.00	-	-
MoPro [†]	R50	66.05	85.66	58.68	78.39
PeerLearn [†]	R50	52.57	73.35	42.04	61.71
FoPro(K=0)	R50	67.03	85.57	68.59	86.03
FoPro(K=1)	R50	67.55	86.31	69.11	86.19
FoPro(K=16)	R50	68.83	87.83	72.02	89.38

[†] Results are reproduced by ourselves with the official codes.



Reduced Gap of Web & Real-word Performance <^{4 腾讯优图}

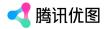
- The abnormal case of K=4 is due to sampling jittering where atypica, unrealistic images of certain classes can be sampled from ImageNet1k.
- The reduced gap reflects that FoPro bridges the noisy web domain and real-world domain with limited *K* shots.

K	WebFG496 Avg.		ImageNet1k		ImageNet500	
	Top 1	Gap	Top 1	Gap	Top 1	Gap
0	81.38	_	67.03	5.57	68.59	3.85
1	+0.65	_	+0.52	5.22	+0.52	3.63
2	+0.85	_	+0.67	5.20	+1.35	3.29
4	+2.17	_	+0.32	4.60	+1.50	2.91
8	+4.10	_	+0.85	4.64	+2.06	2.90
16	+6.43	_	+1.80	3.91	+3.43	2.19
16	87.81	_	68.83	_	72.02	_
Ref.	87.16^{\dagger}	_	76.15 [‡]	_	76.22 [‡]	_

[†] Official results of the B-CNN trained on FGVC-Aircraft, CUB200-2011, and Stanford Car are averaged.

Official results of the R50 trained on ImageNet1k by Py-Torch are quoted respectively for 500 and 1k classes.

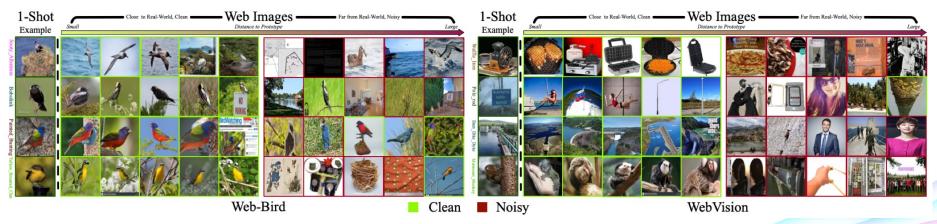
Ablation Study & Qualitative Results



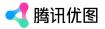
• Compared with pre-defined, fixed similarity metrics such as cosine distance, our Relation Module (RM) discovers clean examples more precisely and efficiently.

<i>K</i> =1	WebFG496 Avg.	ImageNet1k	ImageNet500
w/o RM	81.59	65.22	64.69
w RM	82.03	67.55	69.11

• Visualization on the sorted web examples confirm that the prototypes we polished can be used to indicate clean, web images.



Conclusion



- We propose **FoPro**, the first few-shot guided method for learning from web data, that tackles both **noise** and **domain gap** with a large quantity of web images and a few real-world images.
- Our contribution
 - We propose a new few-shot learning setting in WSL with abundant noisy web images and a few real-world images, which aims to improve the performance of WSL for real-world applications in a cost-efficient way.
 - We present **FoPro** to solve noise and data bias in an end-to-end manner, which relies on the formulation of **class-representative** and **domain-generalized prototypes**.
 - We propose **relation module** for label noise correction. It outperforms fixed metrics (cos distance) by evaluating instance-prototype similarity with a learnable metric.
 - Performance under the increasing K-shot settings demonstrates that FoPro utilizes few shots wisely to bridge the gap towards real-world applications.

Thanks for your attention!